
The Impact of Visual AI
on Test Automation

Empirical Data from 288 Cypress.io,
Selenium, and WebdriverIO Quality Engineers

@Test
public void loginTest() {
//Open browser
driver.get(“http://localhost:8080/”);

//Click on the login button
driver.findElement(By.id(“log-in”)).click();

//Start the test
eyes.open(driver, “Demo App”, “Login”);

//Take a screenshot so AI can analyze
eyes.checkWindow(“Login Window”);

//End the test
eyes.closeAsync();
}

1

Quality Engineering Today

Why Read This Report?

In just 10 minutes, you will learn how you and your team can release higher quality apps faster
and for less time and money than previously thought possible because of Visual AI. Sourced
from 288 quality engineers who spent a combined 1.5 years of quality engineering e!ort, this
study takes five of the most common UI/UX testing use cases and provides clear evidence of
Visual AI’s ability to augment, not rip and replace, code-based frameworks such as Selenium,
WebdriverIO, and Cypress.io to help engineers expand test coverage and ship quality code at
the speed of CI/CD.

Quality Management for Modern Applications is Challenging.

The vast majority of engineering teams are struggling with their quality engineering e!orts.
68%* of us cite quality management as a key blocker to more agile releases and ultimately
CI/CD, a top goal for 59%* of companies1. E!orts to have front-end developers own quality
(e.g. shift left) are showing limited success, or failing outright in some cases. As a result, test
automation “investment fatigue” is a concern among many technical leaders -- a frustration that
investments in quality engineering are not delivering ROI as needed.

The Impact of Visual AI on Test Automation
What Is Visual AI?

Visual AI is a form of computer vision invented by Applitools in 2013 to help quality engineers
test and monitor today’s modern apps at the speed of CI/CD. Visual AI inspects every page,
screen, viewport, and browser combination for both web and native mobile apps and reports
back any regression it sees. Visual AI looks at applications the same way the human eye and
brain do, but without tiring or making mistakes given it’s 99.9999% level of accuracy.

Why Research the Impact of Visual AI on Test Automation?

According to Gartner2, “Application leaders should embrace AI-augmented development now,
or risk falling further behind digital leaders.” AI promises to solve many modern technical
problems, including testing and quality management problems, but it’s hard to separate the
truth from the reality in what really works. Many experiments using AI have failed in testing,
or these AI approaches require opaque rip and replace investments that are not realistic for
teams. Rather than making a promise and asking you to just trust us, we decided to prove
it, objectively, using real world examples, in partnership with real testers at real companies
dealing with test automation everyday.

2

Executing The Research. The Visual AI Rockstar Hackathon.
To execute the study, we built an application representative of 5 common, modern app
functional testing use cases. In November 2019, a challenge was issued to testers all over the
world to compete, and learn, by creating test suites for each of the 5 use cases using their
preferred code-based approach, including Selenium, Cypress, or WebdriverIO, These same
quality engineers then repeated the process for the exact same 5 use cases using Visual AI
from Applitools after completing a 60 minute course on Test Automation University called
Modern Functional Testing Using Visual AI3. Testers competed for 100 prizes worth $42,000
and were judged on their ability to provide 100% test coverage on all use cases, successfully
run these tests, and most important catch all potential bugs using both approaches.

We were blown away by the enthusiastic response from the testing community. Over 3,000
testers signed up to participate with 288 quality engineers ultimately submitting results
after spending 11 hours each on average to complete the challenge. That’s a total combined
e!ort of 80 work weeks! Testers were geographically, firmographically, and technologically
dispersed, providing the industry’s largest, highest quality, and freely available data set for
understanding the impact of Visual AI on test automation, and ultimately on the impact on
quality management and release velocity for modern applications.

Data Sourced From 1.5 Years of Quality Engineering E!ort

Viktar Silakou
Globant
Lead QA
Automation
Engineer

“This is the most interesting
and useful event of the year in
the field of testing automation.
This allows you to take a
look at test automation from
a di!erent point of view
and gives an opportunity to
radically improve your existing
approaches.”

“Completing the Applitools
Hackathon was a keystone
achievement in my career!
I’m now 100% convinced
that Visual AI testing is an
essential tool for e"ciently
validating web and mobile
software applications.”

Tracy Mazelin
Paylocity
QA Engineer

Mendix
Test Engineer

Corina Zaharia

“This challenge propelled me
to dig into alternative ways to
traditional testing. While solving
the challenge, I realized Applitools
will save time on the proposed
scenarios while still delivering the
same value as other traditional
frameworks. Congratulations
for the initiative and the elegant
manner chosen for making the
rockstars understand how powerful
and awesome Visual AI is.”

Participants
3,000

Testers Successfully
Completed

288 100
Winners Were

Chosen

3

Over 3,000 Participants From All Over the World.

2%

Nigeria

36%

India

21%

United States

6%

United Kingdom

3%

Canada

3%

Australia

1%

Netherlands

2%

Brazil

1%

Germany

1%

Ukraine

1%

Romania

1%

Pakistan

1%

Russia

1%

Singapore

1%

South Africa

1%

Vietnam

1%

Indonesia

1%

Hungary

1%

New Zealand

1%

Greece

1%

Spain

1%

France

1%

Egypt

1%

Sri Lanka

Plus another 10% from 75 additional countries!

14%6%

JavaScript C #Python

Java

% OF SUBMISSIONS BY LANGUAGE% OF SUBMISSIONS BY TEST FRAMEWORK

16%

70%

14%

Webdriver IO Cypress

34%

Selenium

4

100 Visual AI Rockstar Hackathon Winners

Grand Prize Winners

Arjan Blok
Mendix

Oluseun Orebajo
FamsItSolutions

Tracy Mazelin
Paylocity

Corporation

Thai
Pangsakulyanont

Taskworld

Corina Zaharia
Mendix

Ioan Cimpean
Congnizant
Softvision

Gavin Samuels
QualityWorks

Viktar Silakou
Globant

Hung Hau
Proofpoint

Adina Nicolae
Sparkware

5

1.2
Hours

What It Means to the Tester?
Testers are able to expand
test coverage while
simultaneously testing
faster than ever before.

What It Means for the Team?
More coverage and faster
testing helps teams release
faster, a primary goal for
almost all engineering teams.

7.0
Hours

5.8x Faster Test Creation
THE IMPACT OF VISUAL AI

6

Lauren Christianson
Quality Engineer
Delta Air Lines

“The Applitools hackathon was a great opportunity to try out Applitools Eyes,
their Visual AI test automation tech. By the time I finished the challenge, I was
really impressed by what it can do and how simple it is to use. Visual AI is
definitely the future of test automation and Applitools is leading the way there!”

Time to Write Tests in Hours
GRAND PRIZE WINNERS VS. ALL 288 SUBMITTERS

With Visual AI, these same Grand Prize
Winners only only needed an additional
6 minutes vs. All 288 Submitters.

1.31.2

Plus Visual AI

288 Submitters 10 Grand Prize Winners

Grand Prizes Winners spent an additional
3.2 hours vs. All 288 Submitters, a 46%
increase in time spent, to create winning
tests using code-based
frameworks. 10.2

7.0

Code-Based Only

7

Time to Write Tests
TABLE 1

Time to Write Tests Code-Based Plus Visual AI Visual AI Impact

 All 288 Submitters 7.0 Hours 1.2 Hours 5.8X Faster

Top 100 Winners 7.1 Hours 1.1 Hours 6.4X Faster

Grand Prize Winners 10.2 Hours 1.3 Hours 7.8X Faster

Detailed Findings

• When using Visual AI, All 288 Submitters were able to author new tests in just 1.2 hours
vs. 7.0 hours using code-based frameworks in isolation -- writing new tests was 5.8x faster
using Visual AI!

• Focusing on the Grand Prize Winners emphasizes the time savings finding. This segment
spent only 1.3 hours when using Visual AI versus 10.2 hours for code-based approaches in
isolation – a 7.8X improvement in time to write tests.

• In order to increase test coverage to grand prize winning levels using code-based
approaches, Grand Prize Winners had to spend 10.2 hours authoring tests, an additional
3.2 hours in comparison to All 288 Submitters. This was a significant 46% increase in the
time spent.

• In contrast, the Visual AI creation time delta between All 288 Submitters (1.2 hours) and
Grand Prize Winners (1.3 hours) was a mere 6 minute (or 8%) increase. This illustrates the
simplicity of Visual AI and its ability to help less experienced testers perform at a higher
level more quickly and easily.

In Conclusion

Grand Prize Winners had a time commitment increase of 46% in order to provide full coverage
using code -based frameworks. In a real world setting, this fact either slows down releases
to give quality engineers the time needed to do their work, or, more often, leads to quality
degradation as test coverage drops in order to maintain better release velocity. By including
Visual AI in their approach, quality engineers obtain the same amount of coverage 7.8x times
faster and can use this found time to better manage quality.

8

What It Means to the Tester?
Testers can either achieve
the same amount of test
coverage using far less test
code, or dramatically expand
test coverage using the same
amount of test code as they
do today.

What It Means for the Team?
Test code is slow to write
and slow to run. With less of
it, teams can either expand
coverage or run tests faster
or some combination of both
depending on their needs
and goals.

351 60
ADJUSTED LINES OF TEST CODE ADJUSTED LINES OF TEST CODE

THE IMPACT OF VISUAL AI

5.9x More Test Code E"cient

9

In addition to the standard metrics of tester e"ciency, the study yielded a new measure called
Test Code E"ciency. Similar to the concept of “code e"ciency” that software developers
look for in their work, test code e"ciency measures both the number of lines of test code a
quality engineer can write per hour and the e"ciency each line of code provides. Visual AI,
which captures images of an entire page with the a single open-ended line of code ‘eyes.
check.window’, is much more e"cient because it is both easy to write and each individual
line of code provides more coverage than code-based approaches that rely on closed-end
assertions.

What Do We Mean By Test Code E"ciency?

All 288 Submitters A. Code-Based B. Plus Visual AI Explanation/Calculation

1. Raw Lines of Test
Code 351 Lines 180 Lines Average number of lines of test

code

2. Time to Write Tests 7 Hours 1.2 Hours Average time to write tests in hours

3. Lines of Test Code
Per Hour 50 Lines Per Hour 150 Lines Per Hour

Row 1 divided by row 2 to adjust for
the test creation time di!erences
between code-based and Visual AI
testing approaches

4. Visual AI E"ciency
Factor 1.0 (Baseline) 3.0

Row 3, column B divided by Row 3,
column A. This approaches treats
code-based results in row 3 as the
baseline for comparison.

5. Adjusted Lines
of Test Code 351 Lines of Code 60 Lines of Code

Row 1 divided by row 4. This
measures Test Code E"ciency by
accounting for both the di!erence
in raw code needed to provide
coverage and the speed at which
that code can be written.

HOW WE CALCULATED TEST CODE EFFICIENCY

10

Test Code E"ciency Based on Adjusted Lines of Test Code
GRAND PRIZE WINNERS VS. ALL 288 SUBMITTERS

Using Visual AI, there is a only a 3%
di!erence between Grand Prize Winners
and All 288 Submitters.

288 Submitters 10 Grand Prize Winners

Grand Prize Winners needed an additional
102 lines of test code to complete their
winning entries which increased their test
code base by 23%.

453

58

351

60

Code-Based Only Plus Visual AI

Ryan LaPensee
Manager, Quality Engineering
ArborMetrix Inc.

“The Applitools Hackathon was truly eye opening to how much testing can
be applied when using Visual AI assertions. As a Quality Engineer it gives
me great joy to know how much test coverage Applitools can provide to an
application.”

11

Test Code E"ciency
TABLE 2

All 288 Submitters Code-Based Plus Visual AI Visual AI Impact

Raw Lines of Test Code 351 Lines 180 Lines 49% Less Raw
Test Code

Lines of Test Code Per Hour 50 Lines 150 Lines 3.0X More
Productive

Adjusted Lines of Test Code 351 Lines of Code 60 Lines of Code 5.9X More Code
E"cient

Top 100 Winners Code-Based Plus Visual AI Visual AI Impact

Raw Lines of Test Code 373 Lines 165 Lines 56% Less Raw Code

Lines of Test Code Per Hour 52 Lines Per Hour 150 Lines Per Hour 2.9X More
Productive

Adjusted Lines of Test Code 373 Lines of Code 55 Lines of Code 6.8X More Code
E"cient

10 Grand Prize Winners Code Based Plus Visual AI Visual AI Impact

Raw Lines of Test Code 453 Lines 145 Lines 68% Less Raw Code

Lines of Test Code Per Hour 45 Lines Per Hour 112 Lines Per Hour 2.5X More Coverage

Adjusted Lines of Test Code 453 Lines of Code 58 Lines of Code 7.8X More Code
E"cient

12

Test Code E"ciency
Detailed Findings

• Data clearly indicates how much more code e"cient testers can be when infusing
Visual AI into their work. All 288 Submitters wrote 351 lines of raw code to obtain
coverage in their code based framework and took 7 hours to do so vs. 180 lines of
code using Visual AI and only 1.2 hours to do so.

• To aid in the analysis, we developed a metric to help better explain the e"ciency
of Visual AI relative to code-based frameworks. Using this new metric of test code
e"ciency, when using Visual AI, quality engineers need only 60 lines of adjusted test
code vs. 351 to provide the same amount of coverage in the same amount of time
-- this leads to our finding that Visual AI is 5.9x more code e"cient than code-based
frameworks in isolation.

• En route to their winning submissions, Grand Prize Winners wrote 453 lines of raw
code in order to provide coverage using code-based frameworks vs. 351 lines of
raw code for All 288 Submitters. This 29% increase explains the additional 3.2 hours
needed to author tests when using code-based approaches in isolation (see Table 1
above).

• In contrast, when using Visual AI, Grand Prize Winners wrote only 145 lines of raw vs.
180 for All 288 Submitters, a 19% decrease between the two groups. We suspect this
decrease in raw code was driven by Grand Prize Winners better understanding of
Visual AI and how to apply it most e"ciently to obtain test coverage.

In Conclusion

With just a few key tips on the optimal use of Visual AI, all testers can enjoy a 7.8x
improvement in test code e"ciency. This gives testers the time to both increase test
coverage significantly, yet still complete testing orders of magnitude faster after adding Visual
AI. This ability is vital to alleviating the testing bottleneck that remains a barrier to faster
releases for most engineering teams.

13

What It Means to the Tester?
More stable code means tests
break less often, allowing
testers to expand coverage
and spend more time
managing quality.

What It Means for the Team?
Teams with stable test code
can test more or test faster
or some combination of both
depending on needs and
goals.

1

7
2
9

22
12
34

NUMBER OF LABELS

NUMBER OF LOCATORS

TOTAL LOCATORS & LABELS

THE IMPACT OF VISUAL AI

3.8x Improvement In Test Code Stability

14

Test Code Stability Based on Number of Labels and Locators
GRAND PRIZE WINNERS VS. ALL 288 SUBMITTERS

When using Visual AI, the number of
locators and labels is almost the same
between All 288 Submitters and Grand
Prize Winners.

288 Submitters 10 Grand Prize Winners

Grand Prize Winners needed 13 additional
locators and labels to provide winning test
suites when using code-based frameworks
in isolation.

47

8

34

9

Plus Visual AICode-Based Only

Fernando Távora
Engineering Productivity Lead
Elementum SCM

“Applitools takes UI testing to the next level. It is not only about checking visual
styles and colors, you can have entire functional checks covered too with much
less code! ”

15

Test Code Stability
TABLE 3

Number of DOM Locators Code-Based Plus Visual AI Visual AI Impact

All 288 Submitters 22 7 3.1X More Stable

Top 100 Winners 26 6 4.3X More Stable

10 Grand Prize Winners 32 7 4.6X More Stable

Number of Text Labels Code-Based Plus Visual AI Visual AI Impact

All 288 Submitters 12 2 6X More Stable

Top 100 Winners 14 1 14X More Stable

10 Grand Prize Winners 15 1 15X More Stable

Total # of Locators & Labels Code-Based Plus Visual AI Visual AI Impact

All 288 Submitters 34 9 3.8X More Stable

Top 100 Winners 40 7 5.7X More Stable

10 Grand Prize Winners 47 8 5.9X More Stable

16

Test Code Stability

Detailed Findings

• Among All 288 Submitters, quality engineers needed 34 labels and locators on average
using code-based frameworks vs. just 9 when using Visual AI -- this indicates 3.8x more
test stability when using Visual AI.

• To win their Grand Prizes, this segment needed 47 locators and labels to provide
coverage using code-based approaches vs. 34 for All 288 Submitters. This delta of 13
locators amounts to a 38% increase in potential maintenance issues with each new
release candidate -- a steep price to pay for the additional coverage.

• In contrast, Grand Prize Winners had only 8 locators and labels after adding Visual AI to
their test suite vs. 9 for All 288 Submitters. This is because Visual AI relies on open-ended
images, not assertions, to manage quality for a fully rendered page or screen. These
numbers are what led to the calculations of 3.8x and 5.9x improvement in test stability for
All 288 Submitters and Grand Prize Winners respectively.

• Further, it is important to note the small 12% delta in locators and labels between Grand
Prize Winners (8 total) and All 288 Submitters (9 total) after adding Visual AI. This is an
indication of how much easier it is for testers to learn and apply Visual AI vs. the more
complex code-based approaches.

In Conclusion

With just a few key tips on the optimal use of Visual AI, all testers can obtain a 5.9x
improvement in overall test stability. This results in much faster testing cycles with fewer
locators and labels at risk of throwing false positives when a new candidate is being tested.
Bottom line - test maintenance is greatly reduced when Visual AI is leveraged!

17

What It Means to the Tester?
The primary goal of the
tester is to catch bugs early.
With faster test builds that
are more stable and easily
maintained, more bugs get
caught before escaping into
production.

What It Means for the Team?
Application quality improves,
fewer late stage bugs
escape, and teams release
faster with more confidence.

BANK OF ASSERTIONS

THE IMPACT OF VISUAL AI

45% More E!ective at Catching Bugs Early

18

Dimpy Adhikary
Test Architect
Happiest Minds Technologies

“The Visual AI Hackathon is a unique way of learning as well as applying a new
skill to solve UI automation challenges. Applitools can drastically reduce the
number of lines of code, provide powerful functional validation, and many cool
out of the box features to make UI automation tests less flaky.”

94%
100%

95%

65%

% Of Potential Bugs Caught
GRAND PRIZE WINNERS VS. ALL 288 SUBMITTERS

Visual AI helped all testers succeed in their main job – catching potential bugs early. While
Grand Prize Winners caught 100%, All 288 Submitters still caught 95% and with just a little more
training, they too are likely to catch them all.

288 Submitters 10 Grand Prize Winners

Code-Based Only Plus Visual AI

19

Percent of Potential Bugs Caught
TABLE 4

% Of Potential Bugs Caught Code-Based Plus Visual AI Visual AI Impact

 All 288 Submitters 65% (11) 94% (16) 45% More E!ective

Top 100 Winners 76% (13) 94% (16) 24% More E!ective

10 Grand Prize Winners 82% (14) 100% (17) 21% More E!ective

Detailed Findings

• When using Visual AI, All 288 Submitters caught 11 out of 17 bugs using code-based
approaches in isolation vs. 16 out of 17 with Visual AI -- this indicates Visual AI is 45% more
e!ective at catching potential bugs pre-production.

• Using code-based frameworks in isolation, Grand Prize Winners were able to catch 14
out of the 17 potential bugs (82%) vs. only 11 (65%) for All 288 Submitters. However, this
increased performance was costly both in terms of time (3.2 more hours as indicated by
Table 1) and test code (102 additional lines of test code as indicated by table 2)

• Additionally, many Grand Prize Winners used a complex technique whereby they looked
at the underlying JavaScript code on the app to inspect for changes as opposed to
using test code assertions. While this was clever and fair in the context of the Hackathon
competition, it is not typically available to testers in a real world setting. This reality renders
some common test cases impossible using a code-based framework (see use cases 3 and
4 in the appendix).

• Finally and most importantly, using Visual AI, all 288 Submitters were able to catch 94% of
bugs, while Grand Prize Winners caught all 20 bugs. This is a very small gap in performance
indicating the ease of which Visual AI can be applied e!ectively to manage quality.

In Conclusion

Any tester now has access to incredibly accurate Visual AI technology that will increase early
stage bug detection by 45% or more. This leads to better app quality, the ultimate goal of a
quality engineer.

20

Coverage Ratings By Testing Approach

Ratings By
Test Approach Code-Based1 With Visual AI2 Tester Pain Points

Solved With Visual AI

Test Case 1:
UI Elements

• Reduces reliance on brittle locators and labels
• Tests all UI elements on the page
• Makes reporting and annotating much easier
• Replaces multiple tests on a given page

with a single test

Test Case 2:
Login Functionality

• Covers traditional functional testing more
easily

• Adds pure visual test coverage (e.g. proper
error messages?)

Test Case 3:
Table Sorting

• Simplifies testing for this complex, if not
impossible, test case

• Easily add automated test coverage using
Visual AI

Test Case 4:
Bar Charts

• Simplifies testing for this complex, if not
impossible, test case

• Easily provides test coverage since Visual
AI does not require DOM access to work
e!ectively

Test Case 5:
Dynamic Content

• Simplifies testing for this complex, if not
impossible, test case

• Easily provides test coverage since Visual
AI can be set to “layout mode” to inspect
layout integrity

As part of the study, dozens of qualitative interviews were conducted with respondents asked to
compare and contrast their experience with Applitools Visual AI in comparison to their preferred
code-based test framework. This table summarizes this learning for readers.

21

What It Means to the Tester?
Code based test frameworks
are complex, especially when
applied to today’s modern
apps. Visual AI provides an
easy path to test automation
for quality engineering
professionals.

What It Means for the Team?
Upskilling the entire team is
easy to do and allows you to
deploy the most experienced
quality engineers against
your most di"cult tasks.

100%

100%

80%

80%

60%

60%

40%

40%

20%

20%0%

79%

88% Code Based

Visual AI

% Tester Score By Test Framework

%
 o

f T
es

te
rs

 W
ho

 A
ch

ie
ve

d
Th

is
Sc

or
e

THE IMPACT OF VISUAL AI

Easier to Learn Than Code-Based Frameworks

22

96%
88%

79%

96%

Average Tester Score By Framework
GRAND PRIZE WINNERS VS. ALL 288 SUBMITTERS

After Just a 1-Hour Course on Test Automation University, All 288 Submitters Score +9 points
better using Visual AI than they did with their preferred code-based framework.

288 Submitters 10 Grand Prize Winners

Code-Based Only Plus Visual AI

Eric Davidson
Software Engineer
Chick-fil-A

“The Hackathon was an incredible opportunity to experience the power of
visual testing. Applitools has created a tool that easily integrates with existing
frameworks and quickly augments functional test suites. I look forward to seeing
more of their innovative spirit as I advocate for them on the teams I support.”

23

Tester Scores By Framework
TABLE 5

288 Submitters Code-Based Plus Visual AI Visual AI Impact

Lowest Score 27% 66% +39 Pts

Highest Score 100% 100% No Di!erence

Average Score 79% 88% +9 Pts

Top 100 Winners Code Based Plus Visual AI Visual AI Impact

Lowest Score 69% 73% +13 Pts

Highest Score 100% 100% No Di!erence

Average Score 87% 93% +6 Pts

Grand Prize Winners Code Based Plus Visual AI Visual AI Impact

Lowest Score 79% 80% 1 Pt

Highest Score 100% 100% No Di!erence

Average Score 96% 96% No Di!erence

24

Tester Scores By Framework
Detailed Findings

• All 288 Submitters received an average scored an average of 79% when using code-
based framework vs. 88% when using Visual AI. This +9 point score increase was
achieved after only a 1-hour course at Test Automation University on “Functional Test
Automation Through Visual AI”

• Scores amongst testers using code-based frameworks exclusively ranged from an
average of 79% among All 288 Testers to 96% for the Grand Prize Winners, a spread of 17
points. As we mentioned previously, this increase in the success rate using code-based
frameworks exclusively cost grand prize winners 3.2 hours of time (See Table 1) and 102
additional lines of code (See Table 2).

• The above results for code-based frameworks represents a large spread in scoring
especially considering the length of time in market (over 20 years for Selenium) and level
of available training.

• In contrast, average success rates among testers using Visual AI ranged from only 88%
among All 288 Submitters to 96% for Grand Prize Winners, a tight spread of only 8 points.

• Additionally, the average success rate among All 288 Testers for Code Based frameworks
was 79% vs. 88% when using Visual AI. This is remarkable performance considering
testers spent only an hour getting trained on Visual AI before applying it to their test
suites.

In Conclusion

Testers are able to perform in their function at a much higher level after only 60 minutes of
training on how to apply Visual AI. This gives significantly more time for testers to increase
coverage and manage quality as opposed to learning and writing test code.

25

Calculating the Value of Visual AI on Test Automation

Using the results of this study, it’s now easy for you to estimate the impact of Visual on
your quality engineering e!orts. Simply follow the instructions below, or contact us at
ImpactOfVisualAI@Applitools.com to get our help!

How many hours do you spend adding new tests per release?

To estimate the number of hours you will save per release, multiply the number above by .13

How many late stage bugs escape per month on average?

To estimate the number of late stage bugs you will eliminate per month, multiply the
number above by .94

How many lines of functional test code does your team maintain currently?

To estimate the number of lines of test code you will eliminate, multiply the number above
by .13

How many locators and labels combined does your team maintain in your functional test
suite currently?

To estimate the number of locator and labels you will eliminate, multiply the number above
by .17

ESTIMATE THE IMPACT FOR YOUR TEAM

26

The Impact of Visual AI on Test Automation
CALCULATION FOR A TYPICAL QUALITY ENGINEERING TEAM

Input: Current Code-
Based Approach

Output: Estimate
After Adding Visual AI Impact of Visual AI

Hours Spent Creating New Tests 2,000 260 435 Test Creation Hours
Saved

Number of Late Stage Bugs 208 10 198 Additional Bugs
Caught Early Stage

Number of Lines of Test Code 50,000 6,500 10,875 Lines of Test Code
Eliminated

Number of Locators & Labels 10,000 1,700 2,075 Number of Labels &
Locators Eliminated

This is a conservative estimate considering only test creation. Were we to
include test reporting, team collaboration, and test maintenance impacts, the
impact is easily 3x or more higher than the estimates provided from this study.

Annual Assumptions for the Typical 4-Person Quality Engineering Team

1. 60 minutes per test

2. 2,000 tests per team

3. 8 bugs per release with an average of 2 major releases per month. This estimates
assumes CI, does not assume CD.

4. 25 lines of test code per test

5. 5 locators and labels in total per test

We encourage you to use the results of this study to estimate the impact for your team!

27

Are You Ready To Try It?
In Just A Few Hours, You Can Be Up and Running with Visual AI

A Virtual, Private Hackathon
Test your skills across your global team?

We will package up our Hackathon app, provide instructions,
guide your team through the contest, judge results, and
celebrate the winners!

Your Private Visual AI Upskill Webinar
Learn How to Use Visual AI From Angie Jones or Raja Rao?

For qualifying teams, we will secure a private webinar reviewing
all the use cases, showing you how it works, and sharing more
details about the results of this study.

We’ll Run Your First 10 Visual AI Tests For Free
Ready To Start Now? Let’s Get Going!

For qualifying teams, we will take a portion of your existing Code
Based test suite and add Visual AI tests in just a few hours

Upskill For Free at Test Automation University
Upskill On Your Own and Join the TAU Community!

Modern Functional
Test Automation

Through Visual AI

Selenium
Webdriver with

Java

Introduction
to Cypress

TESTAUTOMATIONU

4>>x= {’a’:1}
self

self

test

test

fp

if

if

7D file

=new

=new set

set
3>>x

>>
=

x

{’a’:1,‘b’:2}

{’a’:1,‘b’:2}

28

In Closing

3,168 hours of empirical data from 288 quality engineers. These engineers worked through
five di!erent testing use cases with traditional code based test frameworks and then again
in combination with Applitools Visual AI technology. During this experience, these engineers
learned what impact an emerging technology could have on their workflow and productivity
in an e!ort to deliver high-quality apps faster.

Hyper e"cient. Higher quality. Faster releases. What they discovered was Visual AI not only
expanded their test coverage dramatically, but did so by replacing the time spent writing and
maintaining test code with time spent managing quality. Further, these engineers realized
the outcome of increased productivity and higher quality app delivery are achievable in an
incredibly fast and stable environment that dev teams will appreciate.

Upgrade, don’t rip and replace. The quality engineers also realized that the code based
frameworks they are familiar with, including Selenium, Cypress.io, and WebdriverIO, are much
easier to use e!ectively with Applitools Visual AI. Unlike code based framework, Visual AI
does not require extensive training or large amount of time to provide e!ective test coverage.
Teams struggling to initiate their test automation program, or hire test automation engineers,
or upskill an existing team, will find it much easier to overcome all these issues using
Applitools Visual AI.

Visual AI is the future of testing. Apps, websites and smart devices will continue to
proliferate, in addition to the increasing number of screen sizes and page variations that
customers demand. Soon, any attempt to manage the visual and functional quality of an app
or website with the necessary quality assurance and test coverage is going to be impossible
unless you have Visual AI technology.

Hero your customers and gain competitive advantage. As the expectations of faster
software release cycles continue, testing teams and quality engineers must achieve the
highest level of continuous quality for their business. They are the gatekeepers for quality
in the digital transformation journey. Remember, Visual AI and test automation are only tools
and not the end game. The end game is being customer-obsessed, and giving customers the
highest quality digital experiences as quickly and e"ciently as possible.

29

Appendix

• Methodology

• Test Case Descriptions, Images, and Answer Key

• UI Elements

• Login Functionality

• Table Sorting Functionality

• Displaying Bar Charts

• Test Dynamic Content

• Measure Definitions

• Data Dimensions

• Glossary of Key Terms

• About Applitools

• About the Authors

• Footnotes and Additional Resources

30

Methodology
Build The Application - First, we built a simple application representing real world functional
testing use cases. There were five use cases in all with a potential of 20 bugs. Use cases
included testing 1. UI elements 2. login functionality 3. table sorting functionality, 4. data
graphing functionality, and 5. dynamic content. All baselines and new candidates of the test
cases were provided along with a description and testing goals.

Execute the Visual AI Rockstar Hackathon - In order to recruit testers and incent them to
take 11 hours of their time to learn about Visual AI, we gamified the research and created a
hackathon. This hackathon delivered 100 prizes worth US $42,000 including the two $5,000
Grand Prizes and eight $1,000 Platinum Prizes for the testers who provided the most test
coverage, successfully ran their tests, and caught as many bugs as possible. Testers had from
November 1st until November 30th, 2019 to submit their work. Winners were announced in
late January 2020. You can learn who they are by visiting us here.

Recruit Representative Testers - Testers were recruited using a variety of tactics including
social media, paid advertising, and direct marketing. Any tester, anywhere in the world could
qualify. Our goal was to obtain at least 100 submissions, but in the end we received 288
submissions from among 3,024 participants. We ended up with a highly representative data
set geographically, technographically, and demographically.

Represent Major Code Based Frameworks - Testers could qualify by successfully completing
the challenge using Code Based frameworks of Cypress, WebdriverIO, or Selenium in
languages of Java, Javascript, Python, C#, or Ruby. Next, using the appropriate Applitools Eye
SDK, they would repeat the e!ort using Visual AI.

Judging Submissions - Highly experienced quality engineers judged every submission. 100
points were possible for each test framework for a total of 200 points in all. Points were
awarded based on coverage, bugs caught, and test execution success against each of the
five use cases. Judges also made qualitative observations about the test suites to add an
additional layer of insight.

Aggregate and Analyze the Data - Data from each individual submission was logged, blinded
to protect the identity of any individual, and then aggregated prior to analysis. Standard
research quality control procedures were used to ensure that any result included was valid
and met all the criteria for inclusion. Feedback was also obtained from All 288 Submitters and
permission to use their name and a quote was obtained prior to publication.

Release the Findings - Findings were analyzed and released on April 7, 2020. Additional
details by use case will be released throughout 2020. Academics or analysts who want to
access more details should contact us at ImpactOfVisualAI@Applitools.com

31

Use Case 1: Test UI Elements
This use case showcases how testing UI elements, one of the most common tasks in automation
testing, is made simple through Visual AI.

In traditional testing, people rely on flaky DOM locators, field labels, and text such as error
messages to validate di!erent aspects of UI elements. But the DOM locators, labels and
messages can change at any point leading to a lot of unnecessary test failures and in turn lead
to test maintenance. Secondly, and equally importantly, since people can’t reasonably test the
hundreds of UI elements on every page of a given app, they are forced to test a subset, again
leading to a lot of production bugs due to lack of coverage.

With Visual AI, you take a screenshot and validate the entire page. This limits the testers reliance
on DOM locators, labels, and messages. Additionally, you can test all elements rather than having
to pick and choose. Lastly, using the “Bug Region” feature of Applitools, you can annotate multiple
bugs in the same single screenshot rather than writing multiple tests for multiple elements.

In the end using Visual AI, you’ll write less code, get more coverage, and have far more reliable
tests.

32

Use Case 1: Test UI Elements
FIND ALL MISSING ELEMENTS ON THIS PAGE AND REPORT THEM ACCURATELY

1. Incorrect Title Text - Visual Bug

2. Incorrect Username Response - Functional Bug

3. Incorrect Password Text - Visual Bug

4. Missing Password Icon - Visual Bug

5. Spacing Problem - Functional Bug

6. Missing Linked In Icon - Functional Bug

7. Spacing Problem - Functional Bug

8. User Name Response Incorrect

9. Broken Twitter Locator - False

10. Broken Facebook Locator - False Positive Positive

33

Use Case 2: Test Login Functionality
The purpose of this use case is to show how easy it is to perform true functional testing using
Visual AI. As a bonus, testers also get visual testing providing increased coverage with no
additional e!ort. To prove this, we asked people to test the functionality with di!erent login
data such as incorrect username, incorrect password, valid username, valid password, and so
on. The idea was to test both failed and successful logins.

We are routinely challenged by people unfamiliar with Visual AI. How can we do functional
testing using Visual AI? This doesn’t make any sense? Actually, it does! After any UI
functionality, the UI goes to a new state. Maybe you navigate to a new page, maybe you show
a popup, maybe you show an error. Whatever the case may be, all we need to do is take a
screenshot of that new state. If at any point in the future that functionality breaks, then the UI
will be di!erent. Our Visual AI will catch that di!erence easily, an indication the functionality is
either broken or unexpectedly changed. This is functional testing using Visual AI.

34

Use Case 2: Test Login Functionality
TEST LOGIN FUNCTIONALITY ACROSS 4 COMBINATIONS OF INPUTS VIA
DATA-DRIVEN TESTING

Ba
se

lin
e

Test 2.1 Login without entering any
username or password

Bug: Updated error message

Ne
w

 C
an

di
da

te

Test 2.2 Login by entering just
username and no password

Bug: Missing Error message

35

Use Case 2: Test Login Functionality
TEST LOGIN FUNCTIONALITY ACROSS 4 COMBINATIONS OF INPUTS VIA
DATA-DRIVEN TESTING

Test 2.3 Login by entering just
password

Bug: Error message not displayed
correctly

Test 2.4 Login with valid username and
password (success case)

Bug: None

Ba
se

lin
e

Ne
w

 C
an

di
da

te

36

Use Case 3: Test Table Sorting Functionality
Tables are everywhere! In almost all modern applications (e.g. Yelp, Amazon, Banking, Retail,
Software, Media, and more), the data is shown as a list or a table. More and more often,
these tables have a sorting or filtering feature. Using traditional approaches, testing sorting
functionality requires a lot of advanced programming knowledge and tons of test code
because you need to recreate all that sorting functionality within the test code itself.

In this use case, we wanted to showcase how simple it is to test advanced sorting
functionality with Visual AI. A tester can do so without any advanced coding knowledge while
also using a lot less test code. Similar to our use case on login functionality, all you do is to
take a screenshot after the sorting is done. If in the future the sorting result is di!erent than
what is expected, Visual AI will highlight it for you.

37

TEST THAT THE AMOUNT COLUMN SORTS IN ASCENDING ORDER

Use Case 3: Test Table Sorting Functionality

Baseline

Answer Key

Bug: Table is not sorted correctly

New Candidate

38

Use Case 4: Find Bugs in Barcharts
Similar to tables, bar charts and graphs are a vital component in modern apps. Since these
components are usually built using technologies such as Canvas or SVG, they can’t be tested
using traditional testing tools because the DOM doesn’t provide the access to do so. In
response, teams generally resort to manual testing or no testing at all, leading to both slow
testing cycles and production bugs.

Visual AI provides an elegant solution to this common testing problem. Since you are simply
taking a screenshot, you can easily test artifacts like bar charts and graphs irrespective of
what technology they are built with.

THE VISUAL AI

1. Bug: Barchart for January 2018 is di!erent
2. Bug: Barchart for July 2018 is di!erent

Baseline New Candidate

39

Use Case 5: Test Dynamic Content
Dynamic content is another common feature in modern applications. In fact, many applications
including media, entertainment, and a wide variety of retail websites across dozens of
commerce driven verticals A/B test dynamic content routinely. Creating automated tests for
such applications is extremely di"cult and time consuming, so typically teams end up testing
them manually which is slow and prone to error.

Visual AI really shines for these use cases. True computer vision technology like Applitools
provides di!erent Visual AI algorithms purpose-built for a variety of use cases that require
“a di!erent set of eyes”. We then summon these various Visual AI “Modes” and apply them
to specific “Regions” on the page in order to compare screenshots di!erently. In the case
of dynamic content, Visual AI relies on a mode called “Layout”. As the name suggest, it is
to inspect the layout integrity of the page while ignoring the dynamic changes within that
structure.

40

Use Case 5: Test Dynamic Content

MAKE SURE BOTH DYNAMIC ADS SHOW UP

Bug: One of the dynamic ads is missing.
Solution: Mark both dynamic regions as
“Layout regions” to these areas of the
application using Visual AI. If you hit a bug,
add a bug region on top of the missing ad
to indicate the problem.

41

Measure Definitions
Time To Write Tests - The amount of time required to both author and successfully run new
tests expressed in hours and minutes.

Number of Locators - Number of DOM locators used to provide test coverage in a test
automation framework expressed as an absolute number.

Number of Labels - Number of field labels, or error messages used to provide test coverage
in a test automation framework expressed as an absolute number.

Raw Lines of Test Code - Total lines of test code across all files written by the quality
engineer for a given test suite expressed as an absolute number.

Lines of Test Code Per Hour - An average number of lines of test code written by the
engineer in an hour expressed as an absolute number per hour.

Test Code E"ciency - A measure of the combination of both the number of lines of test code
a quality engineer can write per hour and the amount of coverage each one of those lines
provides expressed as an absolute number.

Number of Potential Bugs - A count of all features and UI artifacts that could cause either
visual or functional bug if the candidate release was released without them fixing

Number of Bugs Caught - A count of all visual and functional bugs caught pre-production

Test Coverage - A description of the amount test coverage a quality team is providing an
application expressed as a percentage.

Hackathon Submitter Score - The score the Hackathon participant scored on a scale of 1-100
points with a 100 being a perfect score. These scores are expressed as percentages.

42

Data Dimensions
RESEARCH SEGMENTS

Hackathon Applicants - Any quality engineer that signed up for the Visual AI Rockstar
Hackathon. There were a total of 3,024 applicants.

All 288 Submitters - Any quality engineer that successfully completed the hackathon project.
This is the full sample used as a foundation for the study and amounted to 3,168 hours, or 80
weeks, or 1.5 years of quality engineering data.

Top 100 Winners - The top 100 quality engineers who secured the highest point total for their
ability to provide test coverage on all use cases and successfully catch potential bugs using
both code-based and Visual AI approaches.

Grand Prize Winners - The top 10 quality engineers who scored the highest on the
hackathon.

TECHNICAL DIMENSIONS:

Code Based - Using Code Based frameworks exclusively to build test suites and catch
potential bugs.

Plus Visual AI - Adding Applitools Visual AI In combination with code based frameworks to
build test suites and catch potential bugs.

Impact of Visual AI - The impact Applitools Visual Artificial Intelligence (AI) has on all
measures in the study when used in combination with Code Based frameworks.

43

Glossary of Key Terms
CI/CD - The continuous integration and deployment of feature code used by modern
engineering teams.

Digital Transformation - The 21st century transition of brand and companies from the
physical world to the digital world across all aspects of the business from marketing to sales
to delivery to support.

Shift Left - Describes a quality management approach whereby feature developers assume
responsibility for the quality of the features they develop often leveraging unit testing and
other automated testing techniques applied prior to code check in.

Visual Testing - Testing a web or native mobile application by looking at the fully rendered
pages and screens as they appear before customers. This was historically done manually
or by using error prone pixel matching and DOM based tools, but more recently Applitools
Visual AI has modernized and automated visual testing with 99.9999% accuracy and made it
vital to Agile and CI/CD DevOps processes.

Browser Automation Tools - Browser automation tools connect to browsers and automate
navigation, button clicks, data entry, and the return of this data from a DOM element within
the browser. This leads to their main use of automating di!erent types of common user paths
and tasks through the browser. One major application of these browser automation tools
is testing, but others include web scraping, taking screenshots, etc. Note that, despite the
popular misconception, these tools are not purpose built test automation tools, but rather
browser automation tools re-purposed for testing as one of their main use cases. The largest
browser automation tool is Selenium which emerged in the late 90’s as browser came on the
scene.

Functional Testing - A way to test if the application’s functionality is working as intended for
the user.

44

Glossary of Key Terms
Code Base Functional Testing - This is a common approach to automated functional testing
whereby people do the following:

1. Use browser automation tools such as Selenium to perform navigation and data entry
(form filling)

2. Write additional test code to grab data displayed in the browser using Selenium and/or
3. Use an assertion library such as JUnit.assert or Chai to validate that data, again using

more test code

Visual AI Based Functional Testing - This is a modern approach to automated functional and
visual testing whereby people replace test code with a screenshot of the end-state of the
functionality, then compare that screenshot to the expected outcome every time they run the
test. Since all functionality has an associated UI change, this will show a bug if the screenshot
di!ers. To automate this type of testing, people do the following:

1. Use browser automation tools such as Selenium to perform navigation and data entry
(form filling).

2. Replace test code with screenshots using the appropriate Applitools SDK, then let
Applitools Visual AI manage the di!s.

Cypress (cypress.io) - A JavaScript based Test automation tool. You can find more info here

Webdriver.IO (webdriver.io) - A JavaScript based Test automation tool. You can find more info
here

Selenium (www.selenium.dev) - A popular browser automation tool that’s used heavily for
functional testing. You can find more info here

Test Automation University (testAutomationu.com) - Free test automation courses with
videos, transcripts, quizzes, credits, ranks badges, and certificates!

Visual AI Rockstar Hackathon - A global online hackathon that Applitools ran in November
2019.

Test Creation - Authoring or writing automation tests most often using a programming
language (such as Java), an assertion library (JUnit.assert), a test framework(Junit) and a
browser automation tool (Selenium).

45

Glossary of Key Terms
Test Maintenance - Updating previously created tests that are failed in the new run or fixing
tests that are throwing false positives because of the changes in an application that’s being
tested.

Test Locators - These are DOM element locators that are used by the browser automation
tool to locate the element within the DOM and then interact with that DOM element. These
interactions, for example, could be clicking or returning values displayed in a DOM element.

Test Labels - These are actual texts that are displayed on the app. For example: Error
messages, Field labels etc. In order to verify that text is actually displayed, test automation
engineers need to copy that label and hard code the value as an expected result. Then, they
compare this hard-coded text with the actual value in future test runs to verify quality of the
new candidate.

Test Code Stability - Stability is a description of how often your tests fail or throw false-
positives due to changes in Test Locators and Test Labels. If a test uses a lot of locators and
labels, then it’s considered less stable because these locators and labels can change in
insignificant ways at any point leading to false-positives.

Test Coverage - A description of the amount test coverage a quality team is providing
an application expressed as a percentage. 100% coverage is the desired goal. While that
100% goal not achievable or even necessary in practical terms, current coverage levels are
generally considered inadequate, to slow to be achieved, or both, for modern apps.

Test Code E"ciency - Similar to the concept of “code e"ciency” that software developers
look for in their work, test code e"ciency measures both the number of lines of test code
a quality engineer can write per hour and the amount of coverage each one of those lines
provides.

46

About Applitools
Applitools enables Visual AI powered test automation to help teams release high-quality web
and mobile apps faster and more e"ciently.

Applitools Visual AI modernizes important test automation use cases -- Functional Testing,
Visual Testing, Web and Mobile UI/UX Testing, Cross Browser Testing, Responsive Web
Design Testing, Cross Device Testing, PDF Testing, Accessibility Testing and Compliance
Testing -- to transform the way organizations deliver innovation at the speed of CI/CD at a
significantly lower Total Cost of Ownership (TCO).

Hundreds of companies from verticals such as Software, Banking, Insurance, Retail,
Pharmaceuticals, and Publishing -- including 50 of the Fortune 100 -- use Applitools to deliver
the best possible digital experiences to millions of customers on any device and browser, and
across every screen size and operating system.

Applitools is headquartered in San Mateo, California, with an R&D center in Tel Aviv, Israel

Media Contact:

Jeremy Douglas
Catapult PR-IR
+1 303-581-7760, ext. 16
jdouglas@catapultpr-ir.com

LEARN MORE AT

applitools.com

48

Footnotes and Additional Resources

1. 2019 State of Automated Visual Testing: Continuous Quality in the Age of Digital
Transformation

2. Innovation Insight Report

3. Jonathan Lipps Presentation

4. Modern Functional Test Automation Through Visual AI

5. NowTech Report

6. Critical Capabilities Report

7. Solution Paths Report

8. Hackathon Homepage

