
Enhance your testing
strategy with visual testing

Using only traditional assertions in a functional
testing tool like Selenium Webdriver, Cypress,
WebdriverIO, or Appium, you’d have to check the
following for each visual element:

Checking each of these for each of the
 (a product image, title, description,

button, and 3 color options) in the web page
example in Figure 1 would require .

5 attributes
7 elements

35 assertions

Functional test scripts can be written to validate the
size, position, and color scheme of visual elements.
But if you do this, your

.
test scripts will soon balloon

in size due to assertion bloat

Figure 1: A bug like this button that is covered by the
description could be missed by traditional functional tests.

 Visible (true/false
 Upper-left coordinates (x, y
 Heigh
 Widt
 Background color

 Operating system
 Browser
 Screen size
 Fonts

You also need to test your application across
multiple combinations of:

Functional testing validates that the application
. Tests are defined based on

the requirements of the application, and measure
whether a given input returns the desired output.

works as expected
Visual testing validates that the application

. It tests that an application’s UI
elements — like colors, fonts, and buttons — appear

correctly and that they aren’t inhibiting usability.

looks
as expected

Functional tests are important to test how your app
works, but they only cover what you write for and each
test needs to be asserted individually. If you don’t
expect a certain use case, you won’t catch it.

:Functional tests can easily miss bugs like

 Overlapping text or button
 Misspelled conten
 Accessibility issue
 Invisible or off-page HTML element
 Broad CSS changes

What is functional testing?

Why functional testing isn’t enough

What is visual testing?

Learn the differences between functional and visual testing, gaps that functional
testing misses, and how visual testing can help you deliver a better user experience.

Dynamic, responsive content can render differently
on each combination of these. And that’s only one
page. For more complex views and multiple pages,
you could end up with

.
thousands of lines of

assertion code

Automated visual testing uses software to
 to

uncover visual defects. Automated visual testing integrates with your
existing functional test frameworks like Selenium WebDriver, Cypress,
WebdriverIO, or Appium to add an entire new level of validation.

automate the process of
comparing visual elements across various screen combinations

An AI-powered automated visual testing tool can test a wide range of
visual elements across a range of OS, browser, orientation, and resolution
combinations. Simply

 is sufficient to guide an AI-
powered tool to test results across the range of potential platforms.

running the first baseline rendering and
functional test on a single combination

AI-powered layout comparison ignores content differences and instead
validates the existence of the content and relative placement. This helps

.reduce false positives when testing dynamic content

AI-powered automated visual testing:

Reduce test code and the overhead
of writing new tests for new features.

Drastically increase test coverage of
use cases across your app.

Maintain test cases and baselines
without needing coding skills.

To learn more about how visual testing can enhance your
testing lifecycle, feel free to .reach out to our sales team

Catch unexpected bugs and defects
before they reach production.

Test coverage

Catch more
bugs

Easier test
maintenance

Single-capture
assertions

Benefits of including
in your testing lifecycle

AI-powered automated
visual testing

What is automated visual testing?

 Uses algorithms instead of pixels to determine when errors
have occurred

 Can easily test dynamic content such as personalized content,
ads, and media

 Automatically analyzes tests across different browsers and
devices

Visual and functional
regression testing

Web and mobile
testing

Cross-browser and
device testing

Brand investment,
design validation, and
accessibility

Legal, compliance,
and digital asset
management

Document validation
and PDF testing

Geographic
expansion
localization testing

Customer experience
and production
monitoring

Business use cases

Technical use cases

https://applitools.com/contact/sales/

